Declustering Web Content Indices for Parallel
Information Retrieval

Yoojin Chung ', Hyuk-Chul Kwon °, Sang-Hwa Chung *, and Kwang Ryel Ryu

' Research Institute of Computer, Information & Communication,
Pusan National University, Pusan, 609-735, South Korea
chungyj@pusan.ac.kr
? School of Electrical and Computer Engineering,

Pusan National University, Pusan, 609-735, South Korea
{hckwon, shchung, krryu}@hyowon.pusan.ac.kr

Abstract. We consider an information retrieval (IR) system on a low-cost high-
performance PC cluster environment. The IR system replicates the Web pages
locally, it is indexed by the inverted-index file (IIF), and the vector space model
is used as ranking strategy. In the IR system, the inverted-index file (IIF) is par-
titioned into pieces using the lexical and the greedy declustering methods. The
lexical method assigns each of the terms in the IIF lexicographically to each of
the processing nodes in turn and the greedy one is based on the probability of
co-occurrence of an arbitrary pair of terms in the IIF and distributed to the clus-
ter nodes to be stored on each node’s hard disk. For each incoming user’s query
with multiple terms, terms are sent to the corresponding nodes that contain the
relevant pieces of the IIF to be evaluated in parallel. We study how query per-
formance is affected by two declustering methods with various-sized IIF. Ac-
cording to the experiments, the greedy method shows about 3.7% enhancement
overall when compared with the lexical method.

1 Introduction

In general, Web search engines replicate the Web pages locally, index them, and do
keyword based searching in this local collection. In what follows, we use the words
documents and Web pages interchangeably. In this paper, a PC cluster interconnected
by a high-speed network card is suggested as a platform for fast IR service. For effi-
cient query processing, specialized indexing techniques have to be used with large
document collections. In this work, documents are indexed using inverted files [2].
Since there are several machines in the PC cluster, it is reasonable to distribute the
index among them. In this work, the global inverted-index file (IIF) is partitioned into

! This paper was supported in part by the Korea Science and Engineering Foundation under
contact NO. 2000-2-30300-002-3.

N. Zhong et al. (Eds.): WI 2001, LNAI 2198, pp. 346350, 2001.
© Springer-Verlag Berlin Heidelberg 2001


glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81


Declustering Web Content Indices for Parallel Information Retrieval 347

pieces using the lexical and the greedy declustering methods. The approach used in [3]
is similar to ours.

This paper is organized as follows. In Section 2, we present our PC cluster system
and we detail the declustering methods. In Section 3, our experiments and results
follow. Finally, we conclude with final remarks.

2 Parallel IR System

The overall working mechanism of the parallel IR system model can be explained as
follows. We define an entry node as a node that accepts a user query and distributes
query terms to processing nodes based on the declustering information described in
subsection 2.2. Each processing node consults the partitioned IIF using the list of
query terms delivered from the entry node, and collects the necessary document list
for each term from the local hard disk. Once all the necessary document lists are
collected, they are transmitted to the entry node. The entry node collects the docu-
ment lists from the participating processing nodes, performs required IR operations
and ranks the selected documents according to their scores. Finally the sorted docu-
ment list is sent back to the user as an IR result.

2.1 Network Architecture

The environment for our parallel IR system is a PC cluster interconnected by a high-
speed network card, which is a cost-effective platform for fast IR service. Figure 1
shows the environment where our parallel IR system is implemented, which is an 8-
node SCI-based PC cluster system.

Node Node
Node Node
Eel
Switch

Node
Node Ring

Fig. 1. SCI-based 8 node PC cluster system


glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81


348 Y. Chung et al.

2.2 Two Declustering Methods

For the efficient parallelization of the system, it is important to find out the most time
consuming part in executing the IR system. Using the sequential IR system developed
previously [1], we analyze the system’s execution time, and find that the most time
consuming part is disk access that takes approximately 45 % of total query execution
time.

Thus, it is necessary to parallelize disk access. This can be done by partitioning the
ITF into pieces and distributing the pieces to the processing nodes in a PC cluster. Our
parallel IR system consists of multiple processing nodes and one of which is an entry
node. In our system, documents in the collection are not distributed to multiple proc-
essing nodes but all of them are stored in an entry node. But it is desirable to have the
IIF appropriately declustered to the local hard disks of the processing nodes because
our IR system processes user’s query in parallel on a PC cluster.

We can achieve maximum parallelism if the declustering is done in such a way
that the disk I/O and the subsequent ranking processes are distributed as evenly as
possible to all the processing nodes. We use two declustering methods. The first one is
a lexical declustering method that just assigns each of the terms (together with its list
of document id and weight pairs) in the IIF lexicographically to each of the processing
nodes in turn, repeatedly until all the terms are assigned. The second one is a greedy
declustering method that performs better than the lexical method. Our greedy declus-
tering method tries to put together in the same node those terms that have low prob-
ability of simultaneous occurrence in the same query. If the terms in a query all hap-
pen to be stored in the same node, the disk /O cannot be done in parallel and also the
ranking processes cannot readily be processed in parallel. For an arbitrary pair of
terms in the IIF, how can we predict the probability of their co-occurrence in the same
query? We conjecture that this probability has a strong correlation with the probabil-
ity of their co-occurrence in the same documents. Given a pair of terms ¢, and ¢, the
probability of their co-occurrence in the same documents can be obtained by the value
that is the number of documents in which the two terms ¢, and ¢ co-occur divided by
the number of all the documents in a given document collection. We calculate this
probability for each of all the pairs of terms by preprocessing the whole document
collection.

In the first step of our greedy declustering algorithm, all the terms in the IIF are
sorted in the decreasing order of the number of documents where each term appears.
The higher this number the more important the term is in the sense that it is quite
likely to be included in many queries. This type of terms also have a longer list of
documents in the IIF and thus causes heavier disk I/O. Therefore, it is advantageous to
store these terms in different nodes whenever possible for the enhancement of I/O
parallelism. Suppose there are n processing nodes. We assign the first n of the sorted
terms to each of the n nodes in turn. Each of next n terms is assigned to the node that
contains the lowest summation of probability of co-occurrence of the term in the IIF
and every term in the node. This process repeats until all the terms in the IIF are as-
signed. When the size of the document collection is large and thus the co-occurrence


glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81


Declustering Web Content Indices for Parallel Information Retrieval 349

probability data is available only for those terms that are significant, the remaining
terms are declustered by the lexical method mentioned previously.

3 Experiments
3.1 Comparison of the Greedy and the Lexical Declustering Methods

The greedy declustering method is compared with the lexical method on a test set
consisting of 500 queries each containing 24 terms. The 8-node PC cluster is used for
the experiment. To generate the test queries we lexically sampled 500 documents from
a document collection. From each document, the most important 24 terms are selected
to make a query. The importance of a term in a document is judged by the vector
space model. Therefore, a term in a document is considered important if its frequency
in that document is high enough but at the same time it does not appear in too many
other documents.

Table 1. Comparison of the lexical and the greedy declustering methods(unit: sec)

Lexical Greedy Enhancement
declustering declustering Ratio (%)
Average query 1.174 1.130 3.7

processing time

Average disk access
and 0.794 0.749 57
local IR operation time

Table 1 shows the experimental results comparing the lexical and the greedy declus-
tering methods using those SO0 queries on our 500,000-Korean-document collection.
The greedy method shows about 3.7% enhancement overall when compared with the
lexical method. Since the two methods show differences only during the disk access
and the local IR operations performed at the processing nodes, the time spent for those
operations is measured separately. In this measurement, the greedy method shows
about 5.7% enhancement, which is more significant than the overall enhancement.

3.2 Effect of the Greedy Declustering Method with Various-Sized IIF

In this subsection, the performance of the parallel IR system is analyzed with the
number of documents increased up to 500,000. The 8-node PC cluster and the greedy
declustering method are used for the experiment. The size of IIF proportionally in-
creases as the number of documents increases. For example, the size of IIF is 300
Mbytes for 100,000 documents, and 1.5 Gbytes for 500,000 documents.

The experimental result is presented in Figure 2. It takes 0.265 seconds to process a
single query with the 100,000 document IIF, while it takes 0.477 seconds with the
200,000 document IIF and 1.130 seconds with the 500,000 document IIF. As the IIF


glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81


350 Y. Chung et al.

size increases, the document list for each query term becomes longer, and the time
spent for IR operations increases considerably. As a result, the IR operation eventu-
ally takes more time than the disk access, and becomes the major bottleneck.

£10.071]
100,000 200,000 300,000 400,000 500,000

O Send query term + Receive document list (Communication) B Disk access IFIR operation

Fig. 2. IIF size vs. query processing time

4 Conclusions

In this paper, we studied the effect of the lexical and the greedy declustering methods
for a parallel IR system based on a low-cost high-performance PC cluster system. The
data sets used in our experiments consist of newspaper documents. In the near future,
we intend to do experiments with various data sets having different characteristics and
to evaluate the behavior of our parallel IR system in the presence of very short queries
as those found in the Web, which modified by relevance feedback usually have many
terms.

References

1. Park, S.H., Kwon, H.C.: An Improved Relevance Feedback for Korean Information Retrieval
System. Proceedings of the 16th IASTED Intenational Conference on Applied Informatics,
IASTED/ACTA Press, Garmisch-Partenkirchen, Germany (1998) 65-68

2. Frakes, W., Baeza-Yates, R.: Information retrieval — data structures & algorithms. Prentice-
Hall (1992)

3. Cormack, G.V., Clarke, C.L.A., Palmer, C.R., Kisman, D.LE.: Fast Automatic Passage
Ranking (MultiText Experiment for TREC-8). The proceedings of the Eighth Text Retrieval
Conference (TREC-8), Gaithersburg, Maryland (1999) 735-741


glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81

glace81


